Identification of Spoken Language from Webcast Using Deep Convolutional Recurrent Neural Networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Language Identification Using Deep Convolutional Recurrent Neural Networks

Language Identification (LID) systems are used to classify the spoken language from a given audio sample and are typically the first step for many spoken language processing tasks, such as Automatic Speech Recognition (ASR) systems. Without automatic language detection, speech utterances cannot be parsed correctly and grammar rules cannot be applied, causing subsequent speech recognition steps ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Effective Spoken Language Labeling with Deep Recurrent Neural Networks

Understanding spoken language is a highly complex problem, which can be decomposed into several simpler tasks. In this paper, we focus on Spoken Language Understanding (SLU), the module of spoken dialog systems responsible for extracting a semantic interpretation from the user utterance. The task is treated as a labeling problem. In the past, SLU has been performed with a wide variety of probab...

متن کامل

Multi-Language Identification Using Convolutional Recurrent Neural Network

Language Identification, being an important aspect of Automatic Speaker Recognition has had many changes and new approaches to ameliorate performance over the last decade. We compare the performance of using audio spectrum in the log scale and using Polyphonic sound sequences from raw audio samples to train the neural network and to classify speech as either English or Spanish. To achieve this,...

متن کامل

Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to interand intra-subject differences, as well as to inherent noise associated with EEG data collection. Herein, we propose a novel approach for learning such representations from multichannel EEG time-series, and demonstrate its advantages in the context of ment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Computer Science and Engineering

سال: 2019

ISSN: 2475-8841

DOI: 10.12783/dtcse/iteee2019/28737